Recursion removal in fast matrix multiplication
نویسنده
چکیده
Recursion’s removal improves the efficiency of recursive algorithms, especially algorithms with large formal parameters, such as fast matrix multiplication algorithms. In this article, a general method of breaking recursions in fast matrix multiplication algorithms is introduced, which is generalized from recursions removal of a specific fast matrix multiplication algorithm of Winograd.
منابع مشابه
Fast matrix multiplication is stable
We perform forward error analysis for a large class of recursive matrix multiplication algorithms in the spirit of [D. Bini and G. Lotti, Stability of fast algorithms for matrix multiplication, Numer. Math. 36 (1980), 63–72]. As a consequence of our analysis, we show that the exponent of matrix multiplication (the optimal running time) can be achieved by numerically stable algorithms. We also s...
متن کاملContemporary Mathematics The Schur algorithm for matrices with Hessenberg displacement structure
A Schur-type algorithm is presented for computing recursively the triangular factorization R = LU of a strongly nonsingular n n matrix satisfying a displacement equation RY V R = GH with Hessenberg matrices Y and V and n matrices G, H. If is small compared with n and the matrices Y and V admit fast matrix-vector multiplication, the new algorithm is fast in the sense that it will require less th...
متن کاملFast Matrix Multiplication and Symbolic Computation
The complexity of matrix multiplication (hereafter MM) has been intensively studied since 1969, when Strassen surprisingly decreased the exponent 3 in the cubic cost of the straightforward classical MM to log2(7) ≈ 2.8074. Applications to some fundamental problems of Linear Algebra and Computer Science have been immediately recognized, but the researchers in Computer Algebra keep discovering mo...
متن کاملFast Generalized Bruhat Decomposition
The deterministic recursive pivot-free algorithms for the computation of generalized Bruhat decomposition of the matrix in the field and for the computation of the inverse matrix are presented. This method has the same complexity as algorithm of matrix multiplication and it is suitable for the parallel computer systems.
متن کاملFast recursive matrix multiplication for multi-core architectures
In this article, we present a fast algorithm for matrix multiplication optimized for recent multicore architectures. The implementation exploits different methodologies from parallel programming, like recursive decomposition, efficient low-level implementations of basic blocks, software prefetching, and task scheduling resulting in a multilevel algorithm with adaptive features. Measurements on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003